Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots.

نویسندگان

  • D M Weller
  • B B Landa
  • O V Mavrodi
  • K L Schroeder
  • L De La Fuente
  • S Blouin Bankhead
  • R Allende Molar
  • R F Bonsall
  • D V Mavrodi
  • L S Thomashow
چکیده

Plants have evolved strategies of stimulating and supporting specific groups of antagonistic microorganisms in the rhizosphere as a defense against diseases caused by soilborne plant pathogens owing to a lack of genetic resistance to some of the most common and widespread soilborne pathogens. Some of the best examples of natural microbial defense of plant roots occur in disease suppressive soils. Soil suppressiveness against many different diseases has been described. Take-all is an important root disease of wheat, and soils become suppressive to take-all when wheat or barley is grown continuously in a field following a disease outbreak; this phenomenon is known as take-all decline (TAD). In Washington State, USA and The Netherlands, TAD results from the enrichment during monoculture of populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing Pseudomonas fluorescens to a density of 10 (5) CFU/g of root, the threshold required to suppress the take-all pathogen, Gaeumannomyces graminis var. tritici. 2,4-DAPG-producing P. fluorescens also are enriched by monoculture of other crops such as pea and flax, and evidence is accumulating that 2,4-DAPG producers contribute to the defense of plant roots in many different agroecosystems. At this time, 22 distinct genotypes of 2,4-DAPG producers (designated A - T, PfY and PfZ) have been defined by whole-cell repetitive sequence-based (rep)-PCR analysis, restriction fragment length polymorphism (RFLP) analysis of PHLD, and phylogenetic analysis of PHLD, but the number of genotypes is expected to increase. The genotype of an isolate is predictive of its rhizosphere competence on wheat and pea. Multiple genotypes often occur in a single soil and the crop species grown modulates the outcome of the competition among these genotypes in the rhizosphere. 2,4-DAPG producers are highly effective biocontrol agents against a variety of plant diseases and ideally suited for serving as vectors for expressing other biocontrol traits in the rhizosphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural Plant Protection by 2,4-Diacetylphloroglucinol– Producing Pseudomonas spp. in Take-All Decline Soils

Take-all decline (TAD) is a natural biological control of the wheat root disease “take-all” that develops in response to the disease during extended monoculture of wheat. The research to date on TAD has been mostly descriptive and no particular occurrence is yet fully understood. We demonstrate that root-associated fluorescent Pseudomonas spp. producing the antibiotic 2,4-diacetylphloroglucinol...

متن کامل

Frequency, Diversity, and Activity of 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp. in Dutch Take-all Decline Soils.

ABSTRACT Natural suppressiveness of soils to take-all disease of wheat, referred to as take-all decline (TAD), occurs worldwide. It has been postulated that different microbial genera and mechanisms are responsible for TAD in soils from different geographical regions. In growth chamber experiments, we demonstrated that fluorescent Pseudomonas spp. that produce the antibiotic 2,4-diacetylphlorog...

متن کامل

Frequency of Antibiotic-Producing Pseudomonas spp. in Natural Environments.

The antibiotics phenazine-1-carboxylic acid (PCA) and 2,4-diacetylphloroglucinol (Phl) are major determinants of biological control of soilborne plant pathogens by various strains of fluorescent Pseudomonas spp. In this study, we described primers and probes that enable specific and efficient detection of a wide variety of fluorescent Pseudomonas strains that produce various phenazine antibioti...

متن کامل

Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants.

Indigenous populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing fluorescent Pseudomonas spp. that occur naturally in suppressive soils are an enormous resource for improving biological control of plant diseases. Over 300 isolates of 2,4-DAPG-producing fluorescent Pseudomonas spp. were isolated from the rhizosphere of pea plants grown in soils that had undergone pea or wheat monocultur...

متن کامل

Take-all of Wheat and Natural Disease Suppression: A Review

In agro-ecosystems worldwide, some of the most important and devastating diseases are caused by soil-borne necrotrophic fungal pathogens, against which crop plants generally lack genetic resistance. However, plants have evolved approaches to protect themselves against pathogens by stimulating and supporting specific groups of beneficial microorganisms that have the ability to protect either by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant biology

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2007